Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 310
Filtrar
1.
Chem Biol Interact ; 392: 110927, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38403145

RESUMO

Aromatase inhibitors are commonly employed in the treatment of hormone-dependent breast cancers, and flavonoids have emerged as a promising alternative to existing drug classes with unfavorable side effects. In this study, we conducted in vitro investigations into CYP19A1 (aromatase) inhibitory potential of 14 flavonoids, including pinocembrin, sakuranetin, eriodictyol, liquiritigenin, naringenin, hesperetin, flavanone, baicalein, chrysin, nobiletin, luteolin, sinensetin, tricin, and primuletin. Flavonoids displaying inhibitory activity were further assessed using in silico tools, such as molecular docking to predict binding affinities, as well as SwissADME, admetSAR, and QED (Quantitative Estimate of Drug-likeness) for drug-likeness prediction. Flavonoids with IC50 values less than 10 µM, pinocembrin, eriodictyol, naringenin, liquirtigenin, sakuranetin, and chrysin, exhibited favorable physicochemical properties and ADME profiles, suggesting their potential for development as novel flavonoid-based aromatase inhibitors. This study would provide valuable insights for the development of flavonoid-based aromatase inhibitors for the treatment of breast cancer.


Assuntos
Inibidores da Aromatase , Neoplasias da Mama , Humanos , Feminino , Inibidores da Aromatase/farmacologia , Inibidores da Aromatase/química , Neoplasias da Mama/tratamento farmacológico , Simulação de Acoplamento Molecular , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Flavonoides/química , Aromatase
2.
Molecules ; 28(20)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37894571

RESUMO

A novel series of 1,2,3-triazole/1,2,4-triazole hybrids 5a, 5b, and 6a-i was designed and synthesized as antiproliferative agents targeting aromatase enzymes. The antiproliferative activity of the new hybrids against four cancer cells was studied using Erlotinib as a control. Compounds 6a and 6b demonstrated the highest antiproliferative activity among these hybrids, with GI50 values of 40 nM and 35 nM, respectively. Compound 6b was the most potent derivative, with a GI50 of 35 nM, comparable to Erlotinib's GI50 of 33 nM. Compound 6b inhibited all cancer cell lines with comparable efficacy to Erlotinib. Compounds 5a, 5b, and 6a-i were tested for inhibitory action against aromatase as a potential target for their antiproliferative activity. Results revealed that compounds 6a and 6b were the most potent aromatase inhibitors, with IC50 values of 0.12 ± 0.01 µM and 0.09 ± 0.01 µM, respectively, being more potent than the reference Ketoconazole (IC50 = 2.6 ± 0.20 µM) but less potent than Letrozole (IC50 = 0.002 ± 0.0002). These findings indicated that compounds 6a and 6b had significant aromatase inhibitory action and are potential antiproliferative candidates. The findings were further linked to molecular docking investigations, which gave models of strong interactions with the aromatase domain for inhibitors with high binding scores.


Assuntos
Antineoplásicos , Inibidores da Aromatase , Inibidores da Aromatase/química , Aromatase , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Cloridrato de Erlotinib/farmacologia , Linhagem Celular Tumoral , Triazóis/química , Antineoplásicos/química , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular
3.
J Biol Inorg Chem ; 28(6): 531-547, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37458856

RESUMO

In the treatment of hormone-dependent cancers, aromatase inhibitors (AI) are receiving increased attention due to some undesirable effects such as the risk of endometrial cancer and thromboembolism of SERMs (selective estrogen receptor modulators). Letrozole is the most active AI with 99% aromatase inhibition. Unfortunately, this compound also exhibits some adverse effects such as hot flashes and fibromyalgias. Therefore, there is an urgent need to explore new types of AIs that retain the same-or even increased-antitumor ability. Inspired by the letrozole structure, a set of new derivatives has been synthesized that include a ferrocenyl moiety and different heterocycles. The derivative that contains a benzimidazole ring, namely compound 6, exhibits a higher aromatase inhibitory activity than letrozole and it also shows potent cytostatic behavior when compared to other well-established aromatase inhibitors, as demonstrated by dose-response, cell cycle, apoptosis and time course experiments. Furthermore, 6 promotes the inhibition of cell growth in both an aromatase-dependent and -independent fashion, as indicated by the study of A549 and MCF7 cell lines. Molecular docking and molecular dynamics calculations on the interaction of 6 or letrozole with the aromatase binding site revealed that the ferrocene moiety increases the van der Waals and hydrophobic interactions, thus resulting in an increase in binding affinity. Furthermore, the iron atom of the ferrocene fragment can form a metal-acceptor interaction with a propionate fragment, and this results in a stronger coupling with the heme group-a possibility that is consistent with the strong aromatase inhibition of 6.


Assuntos
Neoplasias da Mama , Citostáticos , Humanos , Feminino , Letrozol/farmacologia , Inibidores da Aromatase/farmacologia , Inibidores da Aromatase/química , Aromatase/metabolismo , Metalocenos , Simulação de Acoplamento Molecular , Nitrilas/farmacologia , Triazóis/farmacologia , Células MCF-7
4.
Med Chem ; 19(10): 996-1001, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37005533

RESUMO

INTRODUCTION: Breast cancer is the most common cancer affecting women worldwide, including Pakistan. More than half of breast cancer patients have hormone-dependent breast cancer, which is developed due to the over-production of estrogen (the main hormone in breast cancer). METHOD: The biosynthesis of estrogen is catalyzed by the aromatase enzyme, which thus serves as a target for the treatment of breast cancer. During the current study, biochemical, computational, and STD-NMR methods were employed to identify new aromatase inhibitors. A series of phenyl-3- butene-2-one derivatives 1-9 were synthesized and evaluated for human placental aromatase inhibitory activity. Among them, four compounds 2, 3, 4, and 8 showed a moderate to weak inhibitory activity (IC50 = 22.6 - 47.9 µM), as compared to standard aromatase inhibitory drugs, letrozole (IC50 = 0.0147 ± 1.45 µM), anastrozole (IC50 = 0.0094 ± 0.91 µM), and exemestane (IC50 = 0.2 ± 0.032 µM). Kinetic studies on two moderate inhibitors, 4 and 8, revealed a competitive- and mixed-type of inhibition, respectively. RESULT: Docking studies on all active compounds indicated their binding adjacent to the heme group and interaction with Met374, a critical residue of aromatase. STD-NMR further highlighted the interactions of these ligands with the aromatase enzyme. CONCLUSION: STD-NMR-based epitope mapping indicated close proximity of the alkyl chain followed by an aromatic ring with the receptor (aromatase). These compounds were also found to be non-cytotoxic against human fibroblast cells (BJ cells). Thus, the current study has identified new aromatase inhibitors (compounds 4, and 8) for further pre-clinical and clinical research.


Assuntos
Inibidores da Aromatase , Neoplasias da Mama , Gravidez , Feminino , Humanos , Inibidores da Aromatase/farmacologia , Inibidores da Aromatase/química , Inibidores da Aromatase/uso terapêutico , Aromatase/química , Aromatase/metabolismo , Aromatase/uso terapêutico , Cinética , Placenta/metabolismo , Neoplasias da Mama/tratamento farmacológico , Estrogênios/uso terapêutico , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico
5.
Molecules ; 28(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37049810

RESUMO

Despite the significant outcomes attained by scientific research, breast cancer (BC) still represents the second leading cause of death in women. Estrogen receptor-positive (ER+) BC accounts for the majority of diagnosed BCs, highlighting the disruption of estrogenic signalling as target for first-line treatment. This goal is presently pursued by inhibiting aromatase (AR) enzyme or by modulating Estrogen Receptor (ER) α. An appealing strategy for fighting BC and reducing side effects and resistance issues may lie in the design of multifunctional compounds able to simultaneously target AR and ER. In this paper, previously reported flavonoid-related potent AR inhibitors were suitably modified with the aim of also targeting ERα. As a result, homoisoflavone derivatives 3b and 4a emerged as well-balanced submicromolar dual acting compounds. An extensive computational study was then performed to gain insights into the interactions the best compounds established with the two targets. This study highlighted the feasibility of switching from single-target compounds to balanced dual-acting agents, confirming that a multi-target approach may represent a valid therapeutic option to counteract ER+ BC. The homoisoflavone core emerged as a valuable natural-inspired scaffold for the design of multifunctional compounds.


Assuntos
Inibidores da Aromatase , Aromatase , Neoplasias da Mama , Desenho de Fármacos , Receptor alfa de Estrogênio , Flavonoides , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/enzimologia , Neoplasias da Mama/metabolismo , Inibidores da Aromatase/síntese química , Inibidores da Aromatase/química , Inibidores da Aromatase/farmacologia , Flavonoides/síntese química , Flavonoides/química , Flavonoides/farmacologia , Humanos , Feminino , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor alfa de Estrogênio/química , Receptor alfa de Estrogênio/metabolismo , Simulação de Dinâmica Molecular , Aromatase/química , Aromatase/metabolismo , Termodinâmica , Concentração Inibidora 50 , Simulação de Acoplamento Molecular
6.
Molecules ; 28(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36985460

RESUMO

CDK4/6 and aromatase are prominent targets for breast cancer drug discovery and are involved in abnormal cell proliferation and growth. Although aromatase inhibitors have proven to be effective (for example exemestane, anastrozole, letrozole), resistance to treatment eventually occurs through the activation of alternative signaling pathways, thus evading the antiproliferative effects of aromatase inhibitors. One of the evasion pathways is Cylin D-CDK4/6-Rb signaling that promotes tumor proliferation and resistance to aromatase inhibitors. There is significant evidence that the sequential inhibition of both proteins provides therapeutic benefits over the inhibition of one target. The basis of this study objective is the identification of molecules that are likely to inhibit both CDK4/6 and aromatase by computational chemistry techniques, which need further biochemical studies to confirm. Initially, a structure-based pharmacophore model was constructed for each target to screen the sc-PDB database. Consequently, pharmacophore screening and molecular docking were performed to evaluate the potential lead candidates that effectively mapped both of the target pharmacophore models. Considering abemaciclib (CDK4/6 inhibitor) and exemestane (aromatase inhibitor) as reference drugs, four potential virtual hit candidates (1, 2, 3, and 4) were selected based on their fit values and binding interaction after screening a sc-PDB database. Further, molecular dynamics simulation studies solidify the stability of the lead candidate complexes. In addition, ADMET and DFT calculations bolster the lead candidates. Hence, these combined computational approaches will provide a better therapeutic potential for developing CDK4/6-aromatase dual inhibitors for HR+ breast cancer therapy.


Assuntos
Inibidores da Aromatase , Neoplasias da Mama , Humanos , Feminino , Inibidores da Aromatase/farmacologia , Inibidores da Aromatase/química , Aromatase , Simulação de Acoplamento Molecular , Anastrozol/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Simulação de Dinâmica Molecular , Inibidores Enzimáticos/uso terapêutico , Quinase 4 Dependente de Ciclina
7.
Steroids ; 192: 109173, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36621620

RESUMO

Estrogens play a pivotal role in the development of estrogen-dependent breast cancer and other hormone-dependent disorders. A common strategy to overcome the pathological effects of estrogens is the use of aromatase inhibitors (AIs), which bind to the enzyme and prevent the union with the natural substrate, decreasing the amount of estrogens produced. Several AIs have been developed, including inhibitors with a steroidal backbone and a nitrogen heterocycle in their structure. Encouraged by the notable results presented by current and clinical steroidal drugs, herein we present the synthesis of a steroidal spiro morpholinone derivative as a plausible aromatase inhibitor. The morpholinone derivative was synthesized over a six-step methodology starting from estrone. The title compound and its hydroxychloroacetamide derivative precursor were evaluated for their antiproliferative profile against estrogen-dependent and independent solid tumor cell lines: A549, HBL-100, HeLa, SW1573, T-47D and WiDr. Both compounds exhibited a potent antiproliferative activity in the micromolar range against the six cancer cell lines, with the hydroxychloroacetamide derivative precursor being a more potent inhibitor (GI50 = 0.25-2.4 µM) than the morpholinone derivative (GI50 = 2.0-11 µM). Furthermore, both compounds showed, in almost all cases, better GI50 values than the steroidal anticancer drugs abiraterone and galeterone. Docking simulations of the derivatives were performed in order to explain the experimental biological activity. The results showed interactions with the iron heme (derivative 3) and important residues of the steroidal binding-site (Met374) for the inhibition of human aromatase. A correlation was found between in vitro assays and the score obtained from the molecular docking study.


Assuntos
Antineoplásicos , Neoplasias da Mama , Feminino , Humanos , Antineoplásicos/química , Inibidores da Aromatase/química , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Estrogênios/farmacologia , Estrona/farmacologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Morfolinas/síntese química , Morfolinas/farmacologia
8.
Curr Comput Aided Drug Des ; 19(4): 243-257, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36644872

RESUMO

BACKGROUND: Breast cancer is one of the most commonly diagnosed cancer types among women worldwide. Cytochrome P450 aromatase (CYP19A1) is an enzyme in vertebrates that selectively catalyzes the biosynthesis of estrogens from androgenic precursors. Researchers have increasingly focused on developing non-steroidal aromatase inhibitors (NSAIs) for their potential clinical use, avoiding steroidal side effects. OBJECTIVES: The objective of the present work is to search for potential lead compounds from the ZINC database through various in silico approaches. METHODS: In the present study, compounds from the ZINC database were initially screened through receptor independent-based pharmacophore virtual screening. These screened molecules were subjected to several assessments, such as Lipinski rule of 5, SMART filtration, ADME prediction using SwissADME and lead optimization. Molecular docking was further applied to study the interaction of the filtered compounds with the active site of aromatase. Finally, the obtained hit compounds, consequently represented to be ideal lead candidates, were escalated to the MD simulations. RESULTS: The results indicated that the lead compounds might be potential anti-aromatase drug candidate. CONCLUSION: The findings provided a valuable approach in developing novel anti-aromatase inhibitors for the treatment of ER+ breast cancer.


Assuntos
Neoplasias da Mama , Animais , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Simulação de Acoplamento Molecular , Inibidores da Aromatase/farmacologia , Inibidores da Aromatase/química , Inibidores da Aromatase/uso terapêutico , Estrogênios/farmacologia , Estrogênios/uso terapêutico , Zinco/uso terapêutico
9.
J Biomol Struct Dyn ; 41(4): 1322-1341, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-34963408

RESUMO

Aromatase, a cytochrome P450 enzyme, is responsible for the conversion of androgens to estrogens, which fuel the multiplication of cancerous cells. Inhibition of estrogen biosynthesis by aromatase inhibitors (AIs) is one of the highly advanced therapeutic approach available for the treatment of estrogen-positive breast cancer. Biphenyl moiety aids lipophilicity to the conjugated scaffold and enhances the accessibility of the ligand to the target. The present study is focused on the investigation of, the mode of binding of biphenyl with aromatase, prediction of ligand-target binding affinities, and pharmacophoric features essential for favorable for aromatase inhibition. A multifaceted 3D-QSAR (SOMFA, Field and Gaussian) along with molecular docking, molecular dynamic simulations and pharmacophore mapping were performed on a series of biphenyl bearing molecules (1-33) with a wide range of aromatase inhibitory activity (0.15-920 nM). Among the generated 3D-QSAR models, the Force field-based 3D-QSAR model (R2 = 0.9151) was best as compared to SOMFA and Gaussian Field (R2=0.7706, 0.9074, respectively). However, all the generated 3D-QSAR models were statistically fit, robust enough, and reliable to explain the variation in biological activity in relation to pharmacophoric features of dataset molecules. A four-point pharmacophoric features with three acceptor sites (A), one aromatic ring (R) features, AAAR_1, were obtained with the site and survival score values 0.890 and 4.613, respectively. The generated 3D-QSAR plots in the study insight into the structure-activity relationship of dataset molecules, which may help in the designing of potent biphenyl derivatives as newer inhibitors of aromatase.Communicated by Ramaswamy H. Sarma.


Assuntos
Inibidores da Aromatase , Aromatase , Humanos , Inibidores da Aromatase/farmacologia , Inibidores da Aromatase/química , Simulação de Acoplamento Molecular , Relação Quantitativa Estrutura-Atividade , Ligantes , Estrogênios
10.
J Biomol Struct Dyn ; 41(5): 1944-1958, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35037830

RESUMO

Breast cancer is the most frequent female cancer and second cause of cancer-related deaths among women around the world. Two thirds of breast cancer patients have hormone-dependent tumors, which is very likely be treated with hormonal therapy. Aromatase is involved in the biosynthesis of estrogen thus a critical target for breast cancer. In this study, in order to identify new aromatase enzyme inhibitors, a series of benzimidazole-1,3,4-oxadiazole derivatives were synthesized and characterized by 1H NMR, 13C NMR, and MS spectra analyses. In the in vitro anticancer assay, all the compounds tested anticancer activities using MTT-based assay against five cancer cell lines (MCF-7, A549, HeLa, C6, and HepG2). Among them, compound 5a exhibited the most potent activity with IC50 values of 5.165 ± 0.211 µM and 5.995 ± 0.264 µM against MCF-7 and HepG2 cell lines. Compound 5a was included in the BrdU test to determine the DNA synthesis inhibition effects for both cell types. Furthermore, compound 5c was also found to be more effective than doxorubicin on the HeLa cell line. The selectivity of anticancer activity was evaluated in NIH3T3 cell line. In vitro, enzymatic inhibition assays of aromatase enzyme were performed for compound 5a acting on the MCF-7 cell line. For compound 5a, in silico molecular docking and dynamics simulations against aromatase enzyme was performed to determine possible protein-ligand interactions and stability. DFT study was performed to evaluate the quantum mechanical and electronic properties of compound 5a. Finally, the theoretical ADME properties of the potential aromatase inhibitor compound 5a were analyzed by calculations.Communicated by Ramaswamy H. Sarma.


Assuntos
Antineoplásicos , Neoplasias da Mama , Camundongos , Animais , Feminino , Humanos , Inibidores da Aromatase/farmacologia , Inibidores da Aromatase/química , Aromatase/química , Simulação de Acoplamento Molecular , Células HeLa , Células NIH 3T3 , Relação Estrutura-Atividade , Antineoplásicos/química , Neoplasias da Mama/tratamento farmacológico , Benzimidazóis/farmacologia , Benzimidazóis/química , Estrutura Molecular , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Linhagem Celular Tumoral
11.
J Biomol Struct Dyn ; 41(20): 10604-10626, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36510679

RESUMO

Dual aromatase-steroid sulfatase inhibitors (DASIs) lead to significant deprivation of estrogen levels as compared to a single target inhibition and thereby exhibited an additive or synergistic effect in the treatment of hormone-dependent breast cancer (HDBC). Triazole-bearing DASI's having structural features of clinically available aromatase inhibitors are identified as lead structures for optimization as DASI's. To identify the spatial fingerprints of target-specific triazole as DASI's, we have performed molecular docking assisted Gaussian field-based comparative 3D-QSAR studies on a dataset with dual aromatase-STS inhibitory activities. Separate contours were generated for both aromatase and steroid sulphates showing respective pharmacophoric structural requirements for optimal activity. These developed 3D-QSAR models also showed good statistical measures with the excellent predictive ability with PLS-generated validation constraints. Comparative steric, electrostatic, hydrophobic, HBA, and HBD features were elucidated using respective contour maps for selective target-specific favourable activity. Furthermore, the molecular docking was used for elucidating the mode of binding as DASI's along with the MD simulation of 100 ns revealed that all the protease-ligand docked complexes are overall stable as compared to reference ligand (inhibitor ASD or Irosustat) complex. Further, the MM-GBSA study revealed that compound 24 binds to aromatase as well as STS active site with relatively lower binding energy than reference complex, respectively. A comparative study of these developed multitargeted QSAR models along with molecular docking and dynamics study can be employed for the optimization of drug candidates as DASI's.Communicated by Ramaswamy H. Sarma.


Assuntos
Inibidores da Aromatase , Neoplasias da Mama , Humanos , Feminino , Inibidores da Aromatase/farmacologia , Inibidores da Aromatase/química , Esteril-Sulfatase/metabolismo , Neoplasias da Mama/tratamento farmacológico , Simulação de Acoplamento Molecular , Aromatase/química , Ligantes , Triazóis/farmacologia , Triazóis/química , Relação Quantitativa Estrutura-Atividade , Simulação de Dinâmica Molecular
12.
Med Oncol ; 40(1): 41, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36471176

RESUMO

Coumarin is a bicyclic oxygen bearing heterocyclic scaffold formed by fusion of benzene with the pyrone ring. Because of its unique physicochemical characteristics and the ease with which it may be transformed into a wide range of functionalized coumarins during synthesis, coumarin provides a privileged scaffold for medicinal chemists. As a result, many coumarin derivatives have been developed, synthesized, and evaluated to target a variety of therapeutic domains, thereby making it an attractive template for designing novel anti-breast cancer compounds. The main culprit in estrogen overproduction in the estrogen-dependent breast cancer (EDBC), is the enzyme aromatase (AR), and it is thought to be a significant target for the effective treatment of EDBC. Considering coumarins versatility, this review presents a detailed overview of diverse study of aromatase as a target for coumarins. An overview of structure-activity relationship analysis of coumarin core is also included so as to summarize the desired pharmacophoric features essential for design and development of aromatase inhibitors (AIs) using coumarin core. Identification of key synthesis techniques that could aid researchers in designing and developing novel analogues with significant anti-breast cancer properties along with their mechanism of action have also been covered in the current review.


Assuntos
Antineoplásicos , Inibidores da Aromatase , Neoplasias da Mama , Cumarínicos , Estrogênios , Neoplasias Hormônio-Dependentes , Feminino , Humanos , Antineoplásicos/uso terapêutico , Aromatase/metabolismo , Inibidores da Aromatase/farmacologia , Inibidores da Aromatase/química , Inibidores da Aromatase/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Química Farmacêutica , Cumarínicos/farmacologia , Cumarínicos/química , Cumarínicos/uso terapêutico , Estrogênios/metabolismo , Neoplasias Hormônio-Dependentes/tratamento farmacológico
13.
Chem Biol Interact ; 368: 110243, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36374910

RESUMO

Many environmental pollutants act as endocrine-disrupting compounds by inhibiting human placental 3ß-hydroxysteroid dehydrogenase/Δ5-4 isomerase type 1 (HSD3B1) and aromatase (CYP19A1) activities. In this study, we screened 13 chemicals of environmental concern for their ability to inhibit human HSD3B1 and CYP19A1 by measuring the conversion of pregnenolone to progesterone for HSD3B1 activity and the conversion of testosterone to 17ß-estradiol for CYP19A1 activity in human JEG-3 choriocarcinoma cell microsomes. HSD3B1 had an apparent Km of 0.323 µM and an apparent Vmax of 0.111 nmol/mg/min and CYP19A1 had an apparent Km of 56 nM and an apparent Vmax of 0.177 nmol/mg protein/min. 17ß-Estradiol, bisphenol A, and bisphenol AF competitively inhibited HSD3B1 with Ki values of 0.8, 284.1, and 141.2 µM, respectively, while diethylstilbestrol had a mixed inhibition on human HSD3B1 with the Ki of 8.0 µM. Ketoconazole, bisphenol A, and bisphenol AF noncompetitively inhibited CYP19A1 with Ki values of 10.3, 54.4, and 45.7 µM, respectively, while diethylstilbestrol and zearalenone competitively suppressed CYP19A1 with Ki values of 63.0 and 16.6 µM, respectively. Docking analysis showed that 17ß-estradiol, diethylstilbestrol, bisphenol A, and bisphenol AF bound the steroid binding pocket facing the catalytic residues Y155 and K159 of HSD3B1, and that ketoconazole, bisphenol A, and bisphenol AF bound heme binding pocket while diethylstilbestrol and zearalenone bound the steroid binding site of CYP19A1. In conclusion, 17ß-estradiol, diethylstilbestrol, bisphenol A, and bisphenol AF are human HSD3B1 inhibitors, and ketoconazole, zearalenone, diethylstilbestrol, bisphenol A, and bisphenol AF are human CYP19A1 inhibitors.


Assuntos
Inibidores da Aromatase , Poluentes Ambientais , Complexos Multienzimáticos , Feminino , Humanos , Gravidez , Aromatase/metabolismo , Inibidores da Aromatase/química , Inibidores da Aromatase/farmacologia , Linhagem Celular Tumoral , Dietilestilbestrol/toxicidade , Estradiol/metabolismo , Cetoconazol/toxicidade , Complexos Multienzimáticos/antagonistas & inibidores , Zearalenona/toxicidade , Esteroide Isomerases/antagonistas & inibidores , Progesterona Redutase/antagonistas & inibidores , Fenóis/toxicidade , Poluentes Ambientais/toxicidade
14.
Eur J Med Chem ; 244: 114802, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36240547

RESUMO

The most frequently diagnosed breast cancer (BC) type in women expresses estrogen receptor (ER) and depends on estrogens for its growth, being classified as ER positive (ER+). The gold standard therapy for the treatment of this tumor relies on the inhibition of the aromatase enzyme, which catalyzes estrogen biosynthesis. Despite the clinical success of current aromatase inhibitors (AIs), after prolonged therapeutic regimens, BC ER + patients experience acquired resistance and disease relapse. This points up the urgent need for a newer generation of AIs able to overcome resistance issues, while mitigating toxicity and side effects of current therapies. Here we performed the synthesis, biological evaluation, and extensive structural characterization by advanced molecular simulation methods of a new generation of dualsteric non-steroidal AIs, which simultaneously target the enzyme's active and allosteric sites. Notably, 3d, the most active AI of the series, exhibits a single-digit nM potency (IC50 2 nM). A detailed inspection of its binding mode reveals that the ancillary alkoxy chain predatorily takes advantage of the small hydrophobic cavities lining the allosteric site, triggering a remodeling of its residues and completely sealing the active site access-channel. As a result, the inhibitor is effectively locked in. This study sets a conceptual basis to develop a new generation of AIs exploiting a dualsteric targeting strategy.


Assuntos
Aromatase , Neoplasias da Mama , Humanos , Feminino , Aromatase/metabolismo , Domínio Catalítico , Inibidores da Aromatase/química , Receptores de Estrogênio/metabolismo , Neoplasias da Mama/patologia
15.
Eur J Med Chem ; 240: 114569, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35834906

RESUMO

One in every eight women will be diagnosed with breast cancer during their lifetime and approximately 70% of all patients are oestrogen receptor (ER) positive depending upon oestrogen for their growth accounting for third generation aromatase (CYP19A1) inhibitors being the mainstay in the treatment of ER-positive breast cancer. Despite the success of current aromatase inhibitors, acquired resistance occurs after prolonged therapy. Although the precise mechanisms of resistance are not known, lack of cross resistance among aromatase inhibitors drives the need for a newer generation of inhibitors to overcome this resistance alongside minimising toxicity and adverse effects. Novel triazole-based inhibitors were designed based on previously published parent compound 5a, making use of the now available crystal structure of CYP19A1 (PDB 3S79), to make modifications at specific sites to explore the potential of dual binding at both the active site and the access channel. Modifications included adding long chain substituents e.g. but-2-ynyloxy and pent-2-ynyloxy at different positions including the most active compound 13h with IC50 value in the low picomolar range (0.09 nM). Aromatase inhibition results paired with molecular dynamics studies provided a clear structure activity relationship and favourable dual binding mode was verified. Toxicity assays and CYP selectivity profile studies for some example compounds were performed to assess the safety profile of the prepared inhibitors providing the basis for the 4th generation nonsteroidal aromatase inhibitors.


Assuntos
Inibidores da Aromatase , Neoplasias da Mama , Aromatase/metabolismo , Inibidores da Aromatase/química , Inibidores da Aromatase/farmacologia , Neoplasias da Mama/metabolismo , Feminino , Humanos , Receptores de Estrogênio , Triazóis/farmacologia
16.
J Enzyme Inhib Med Chem ; 37(1): 1600-1609, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35635194

RESUMO

Letrozole is one of the most prescribed drugs for the treatment of breast cancer in post-menopausal women, and it is endowed with selective peripheral aromatase inhibitory activity. The efficacy of this drug is also a consequence of its long-lasting activity, likely due to its metabolic stability. The reactivity of cyano groups in the letrozole structure could, however, lead to chemical derivatives still endowed with residual biological activity. Herein, the chemical degradation process of the drug was studied by coupling multivariate curve resolution and spectrophotometric methodologies in order to assess a detailed kinetic profile. Three main derivatives were identified after drug exposure to different degradation conditions, consisting of acid-base and oxidative environments and stressing light. Molecular docking confirmed the capability of these compounds to accommodate into the active site of the enzyme, suggesting that the sustained inhibitory activity of letrozole may be at least in part attributed to the degradation compounds.


Assuntos
Inibidores da Aromatase , Aromatase , Inibidores da Aromatase/química , Inibidores da Aromatase/farmacologia , Quimiometria , Feminino , Humanos , Cinética , Letrozol/farmacologia , Simulação de Acoplamento Molecular , Nitrilas/química , Nitrilas/farmacologia , Triazóis/química
17.
Toxicol In Vitro ; 81: 105332, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35176449

RESUMO

Human aromatase, also called CYP19A1, plays a major role in the conversion of androgens into estrogens. Inhibition of aromatase is an important target for estrogen receptor (ER)-responsive breast cancer therapy. Use of azole compounds as aromatase inhibitors is widespread despite their low selectivity. A toxicological evaluation of commonly used azole-based drugs and agrochemicals with respect to CYP19A1 is currently requested by the European Union- Registration, Evaluation, Authorization and Restriction of Chemicals (EU-REACH) regulations due to their potential as endocrine disruptors. In this connection, identification of structural alerts (SAs) is an effective strategy for the toxicological assessment and safe drug design. The present study describes the identification of SAs of azole-based chemicals as guiding experts to predict the aromatase activity. Total 21 SAs associated with aromatase activity were extracted from dataset of 326 azole-based drugs/chemicals obtained from Tox21 library. A cross-validated classification model having high accuracy (error rate 5%) was proposed which can precisely classify azole chemicals into active/inactive toward aromatase. In addition, mechanistic details and toxicological properties (agonism/antagonism) of azoles with respect to aromatase were explored by comparing active and inactive chemicals using structure-activity relationships (SAR). Lastly, few structural alerts were applied to form chemical categories for read-across applications.


Assuntos
Aromatase , Azóis , Aromatase/metabolismo , Inibidores da Aromatase/química , Inibidores da Aromatase/toxicidade , Azóis/toxicidade , Citocromo P-450 CYP1A1 , Humanos , Receptores de Estrogênio , Relação Estrutura-Atividade
18.
Reprod Toxicol ; 108: 43-55, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35091028

RESUMO

The development and application of (quantitative) structure-activity relationship ((Q)SAR) models for reproductive toxicology remains challenging, given the complexity of the endpoint and the risks associated with subsequent decision making. Adverse outcome pathways (AOPs) organise knowledge and provide context of model outputs, aiding risk assessors' decision making. Using aromatase as an example, we demonstrate how AOPs can be used to contextualise a variety of (Q)SAR approaches. AOPs stemming from aromatase inhibition - leading to adverse outcomes of regulatory significance - were synthesised and annotated with relevant assays, assay data and (Q)SAR models. The resulting framework enabled the deployment of different types of (Q)SAR models that predict for key events along the pathway. The use of models for molecular initiating events enables relevant knowledge to span a wider area of chemical space - compared to using models trained solely on in vivo toxicity data. Utilising such methods, alongside additional assay data and exposure information, could lead to improved risk assessment strategies during compound prioritisation and labelling.


Assuntos
Rotas de Resultados Adversos , Inibidores da Aromatase/toxicidade , Relação Quantitativa Estrutura-Atividade , Reprodução/efeitos dos fármacos , Animais , Inibidores da Aromatase/química , Humanos
19.
Anticancer Agents Med Chem ; 22(11): 2063-2079, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34702156

RESUMO

World Health Organization categorized breast cancer as one of the leading cancer types in females worldwide, and its treatment remains challenging. Accumulated evidence suggested the role of estrogen and its metabolites in pre- and post-menopausal women. Upregulation of estrogen-dependent aromatase is significantly involved in the pathogenesis of breast cancer. Several aromatase inhibitors, such as exemestane, formestane, and letrozole, are being used clinically, owing to their estrogen suppression role. Apart from these drugs, several other molecules, such as natural and synthetic flavonoids, have been reported widely for a similar biological activity. However, some reasonable modifications are required for these structures to achieve desired efficacy and to alleviate toxicity. Designing a novel aromatase inhibitor will be possible if we can establish a rational correlation between the chemistry and biological features of the existing molecules. The benzopyranone- ring system, present in the flavonoid molecules, has been reported as a pharmacophore due to its inhibitory activity on aromatase, which helps repress breast cancer progression. This essential feature has been utilized to modify several natural flavonoids into 5 and 7 hydroxy/methoxy flavone, 4-imidazolyl/triazolyl flavone, 5,4'- diamino flavone, 7,8- benzo-4-imidazolyl flavone, α-naphthoflavone, and 2-azole/thiazolyl isoflavone derivatives. These scaffolds have been considered in this review for meticulous study in aspects of the structure-activity relationship for aromatase inhibitory activity, and it would likely pave the way for designing a potential lead candidate in the future.


Assuntos
Neoplasias da Mama , Flavonas , Aromatase/metabolismo , Inibidores da Aromatase/química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Estrogênios , Feminino , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Humanos , Relação Estrutura-Atividade
20.
Anticancer Agents Med Chem ; 22(7): 1370-1385, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34455966

RESUMO

BACKGROUND: Many natural and synthetic flavonoids have been studied and documented by inhibiting aromatase enzymes for their anti-cancer activity against breast carcinoma. The aromatase enzyme is a possible target for the estrogen's positive breast cancer receptor. OBJECTIVE: Hence, a series of flavonoids have been synthesized and assessed for their in vitro cytotoxicity and aromatase inhibitory activity. METHODS: 39 Flavonoids were synthesized and characterized by spectroscopic techniques, and their computational study was performed using the maestro version of the Schrodinger. In silico ADME properties were checked by QikProp software. A total of 18 compounds were evaluated based on the docking score using cytotoxicity assay in human breast cancer cell line MCF-7. RESULTS: Of the 18 compounds tested, 07 compounds, namely 2b, 8b, 14b, 15b, 19b, 24b, and 30b flavonoids were found to be more active with their IC50 values of 20.73 µM, 1.636 µM, 16.08 µM, 22.02 µM, 15.75 µM, 0.345 µM and 16.08 µM, respectively, compared with the reference drug letrozole. The in vitro aromatase inhibitory activity of six compounds 2b, 8b, 14b, 19b, 24b, and 30b was conducted using a fluorogenic assay kit. The values of IC50 for compounds 2b and 24b were found to be 0.31 µM and 0.36 µM, respectively. CONCLUSION: Therefore, it was concluded that compounds 2b and 24b had a potent inhibitory effect of aromatase compared with letrozole with an IC50 value of 0.86 µM. At the same time, the other compounds 8b, 14b, 30b, and 19b were considered to have similar aromatase inhibitory activity. Hence, their essential aromatase inhibitory activities make them good lead candidates for developing potent inhibitors of aromatase.


Assuntos
Antineoplásicos , Neoplasias da Mama , Antineoplásicos/química , Aromatase/metabolismo , Inibidores da Aromatase/química , Neoplasias da Mama/tratamento farmacológico , Proliferação de Células , Feminino , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Humanos , Letrozol/farmacologia , Letrozol/uso terapêutico , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...